

Challenges and Advantages of Solar-Powered Vaccine Cold chain Systems in India: A Review

Sharadhi Joshi, Neha Ahire

Student, MBA Hospital and Healthcare Management Assistant Professor Symbiosis Institute of Health Sciences, Symbiosis International Deemed University Pune

ABSTRACT

Introduction:

Immunization programs are essential for safeguarding populations against vaccine-preventable diseases. These programs, implemented by national governments in collaboration with international organizations, aim to provide vaccines to individuals of all age groups. India launched the Universal Immunization Programme (UIP) in 1985, which has become one of the largest immunization campaigns globally. The UIP conducts approximately 12 million regular immunization sessions annually, targeting 26 million babies and 29 million pregnant women The successful delivery of vaccines relies on a well-coordinated cold chain system, which ensures that vaccines are stored and transported within specific temperature ranges to maintain their potency. Traditional cold storage methods, such as electric refrigeration systems, face limitations in resource-constrained settings due to electricity shortages, frequent power outages, and high operating costs. This study aims to undersath the feasibility of use of solar power technology in vaccine cold chain systems through a asystematic review of literature

Aim: To study the use of solar technology in creating the sustainable approach towards vaccine cold chain systems in India.

Objectives: Objectives of this study are

•Assess how vaccination coverage and the reliability of the cold chain, particularly in India, are affected by solar-powered cold chain systems.

•Compare the deployment of solar-powered cold chain systems to established vaccination cold chain systems to see whether it is economically feasible.

•Identify barriers to implementing, maintaining, and repairing solar-powered vaccine cold chain systems.

Methodology: A systematic search strategy, following PRISMA guidelines, was employed to select and analyze relevant literature. Research databases and keywords were used to identify suitable studies. Inclusion and exclusion criteria were applied to select pertinent sources for analysis.

Results and Discussion: Key findings emerge from the reviewed literature, offering insights across several critical dimensions. Firstly, it becomes evident that solar-powered refrigeration systems play a substantial role in enhancing the maintenance of vaccine cold chains, especially in remote and resource-constrained areas. Furthermore, the literature sheds light on the challenges associated with global vaccine distribution, highlighting solar technology as a potent mitigating factor in overcoming these hurdles. Solar solutions are revealed to be facilitators of equitable healthcare access while simultaneously contributing to energy efficiency, aligning with sustainability goals. Additionally, the scalability of solar-powered solutions is emphasized, illustrating their adaptability to diverse contexts. Finally, the literature underscores the indispensability of supportive policies in promoting the widespread adoption of solar refrigeration technology, underlining the importance of a conducive regulatory environment for sustainable healthcare infrastructure enhancement.

Conclusion: In conclusion, this systematic review underscores the pivotal role of solar-powered refrigeration as a sustainable and effective solution for vaccine cold chain management in resource-constrained settings in India. It advocates strategic interventions, policy adjustments, and investments to fully harness solar refrigeration's potential in fortifying healthcare services and achieving Sustainable Development Goals. Collaboration among governments, NGOs, and the private sector is deemed essential for equitable vaccine access and enhanced resilience in vaccine supply chains.

KEYWORDS: Vaccine Cold chain, Solar powered, Sustainability, Supply chain.

INTRODUCTION

Immunization programs are essential for safeguarding populations against vaccine-preventable diseases. These programs, implemented by national governments in collaboration with international organizations, aim to provide vaccines to individuals of all age groups. The UIP conducts approximately 12 million regular immunization sessions annually, targeting 26 million babies and 29 million pregnant women(1).

The successful delivery of vaccines relies on a well-coordinated cold chain system, which ensures that vaccines are stored and transported within specific temperature ranges to maintain their potency(2). Deviations from these temperature requirements can render vaccines ineffective. The primary objective of the vaccine cold chain is to preserve vaccines within a temperature range typically between 2°C and 8°C (35.6°F and 46.4°F). Achieving this goal involves supply chain management and maintaining optimal temperature conditions during storage, transportation, and distribution. However, traditional cold storage methods, such as electric refrigeration systems, face limitations in resource-constrained settings due to electricity shortages, frequent power outages, and high operating costs.(3)

To address these challenges, innovative cold storage technologies have emerged, providing sustainable and reliable solutions for vaccine storage in areas with inadequate or costly access to electricity(4). One promising approach is the use of solar-powered refrigeration systems. These systems harness energy from the sun to provide a continuous and environmentally friendly power source for cold storage. Solar-powered refrigeration technology offers a viable alternative to traditional electric refrigeration, particularly in regions abundant in sunlight resources(5). Its integration into vaccine cold chain management has demonstrated promising results in enhancing accessibility and effectiveness of vaccination programs (5,6)

Solar refrigeration process involves extracting heat from a specific environment to lower its temperature below the surrounding ambient temperature. Rather than relying on conventional vapour compression or absorption cycles, it aims to utilize thermoelectric effects to achieve cooling². This approach offers a promising solution for reliable and sustainable vaccine storage, particularly in regions where traditional cooling methods are impractical or unavailable(7).

According to WHO, Solar refrigeration was a promising development in the early 1980s, providing an alternative to absorption technology to meet cold chain needs in remote areas(14,15). But due to lack of personal training, less awareness on technology and poor supply chain of solar it didn't achieve the success.

¹ <u>https://www.icmr.gov.in/pdf/idrone/a_ICMR_Training_Modulle_V2.pdf</u>

² In thermoelectric module refrigerator mechanical parts such as, compressor, liquid coolant, condenser coil, evaporation coil and expansionvalve are replaced by thermoelectric module. Ganesh S. Dhumal, P.A. Deshmukh

The solar-powered vaccine cold chain system supports these SDGs by enhancing healthcare access, promoting clean energy, fostering innovation, mitigating climate change, and encouraging partnerships across the country. The implementation of a solar-powered vaccine cold chain in India aligns with several Sustainable Development Goals (SDGs) set by the United Nations(16).

This review aims to explore the intersection of vaccine cold chain management and cold storage technology, with a specific emphasis on the use of solar-powered refrigeration systems to overcome the challenges associated with inadequate and costly access to reliable electricity. By examining current research on traditional vaccine cold chain management, their benefits, limitations, and future prospects of solar-powered vaccine cold chain systems, this review seeks to understand the potential of these innovative solutions in optimizing vaccine delivery and improving immunization coverage in resource- constrained regions(17).

Effective vaccine distribution is a cornerstone of public health, especially in a country as vast and diverse as India. This literature review delves into an array of studies and assessments that focus on improving vaccine cold chain systems in India by integrating sustainable practices and solar technology. It also examines how these findings can influence the country's healthcare infrastructure development.(18,19)

Studies consistently emphasizes the importance of sustainability in vaccine distribution. Researchers have explored innovative solutions to mitigate the environmental impact of vaccine logistics. (22). These units not only reduce energy consumption but also align with global sustainability objectives, making vaccine distribution more environmentally responsible. This collective emphasis on sustainability underscores the global commitment to reduce the carbon footprint of vaccine distribution while ensuring the efficacy of immunization efforts(23)

AIM AND OBJECTIVES

Aim: To study the use of solar technology in creating the sustainable approach towards vaccine cold chain systems in India.

Objectives: Objectives of this study are

- Assess how vaccination coverage and the reliability of the cold chain, particularly in India, are affected by solar-powered cold chain systems.
- Compare the deployment of solar-powered cold chain systems to established vaccination cold chain systems to see whether it is economically feasible.
- Identify barriers to implementing, maintaining, and repairing solar-powered vaccine cold chain systems

METHODOLOGY

The study design for this secondary review is systematic and follows the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. It involves a structured and rigorous approach to identifying, selecting, and critically evaluating relevant research studies, reports, and literature on the topic.

To ensure the study reflects recent events and provides comprehensive and up-to-date information, a systematic literature search was conducted. Relevant databases such as "Scopus" and "PubMed," Indian Government websites including the "National Health Mission," "Ministry of Health and Family Welfare," and the "National Cold Chain Management Information System," as well as international websites such as the World Health Organisation and UNICEF were included in the search. The search period spanned two months, specifically May and June 2023. The following keywords were utilized: "Immunisation Programmes," "Vaccine Cold Chain Systems," "India," "Solar Energy," "difference," "Solar powered vaccine cold chain systems," "cost effectiveness," "On-grid," "off-grid," "electricity," and various combinations thereof. Minor variations in search options necessitated slightly different search strategies for each database.

Additionally, relevant articles were identified by scanning the reference lists of the retrieved studies. On the "Scopus" database, the search strategies employed were as follows:

Search Strategy 1: Key words (in the field of "Title, abstract, keywords"): Impact+Solar powered + Vaccine cold chain systems

Search Strategy 2: Key words (in the field of "Title, abstract, keywords"): Solar energy + difference" + Ongrid electricity

Search Strategy 3: Key words (in the field of "Title, abstract, keywords"): Impact +Immunisation Programmes + India

Further refinement was performed in the "Subject Areas" and "Document Types" fields to improve the relevance of the results. The "Subject Areas" were limited to "vaccine cold chain systems" and "impact of solar energy in healthcare centers." The "Document Types" were limited to "Article" and "Proceeding Paper." On "PubMed," the initial literature collection utilized the following three search strategies: Search Strategy 7: Key words (in the field of "Title"): Immunisation Programmes + India

Search Strategy 8: Key words (in the field of "Title"): Solar powered + Vaccine cold chain systems

On Indian Government websites, specific documents and information were gathered:

The articles and documents initially identified from the reference lists of papers obtained through the database searches were also assessed using the same criteria adhering to PRISMA (*Preferred Reporting Items for Systematic Reviews and Meta-Analyses*) guidelines. (Figure 2).

Figure 2. Flow Chart of Study Selection Process

FINDINGS AND RESULTS

Table 1: Overview of Included Studies

S.No	Author(s),Source	of	the Title of the Study	Key Findings of the Study	
	study & Year of Pu	blicat	ion		

1	Lalith Pankai Rai Nadimuthu	Environmental	friendly	a	Maintaining covid 19 vaccines in required
1	& Kirubakaran Victor	micro cold storage	for last-	u.	temperature in micro cold storage
	Environmental science and	mile Covid-19	vaccine	h	Potential of micro cold storage
	Research- article (November	logistics	vacenie	0.	technology to improve the sustainability
	2021)	iogistics			and efficiency of vaccine distribution
	2021)			C	Eco friendly refrigerants and Energy
				C.	efficient components reduces greenhouse
					encient components reduces greenhouse
				4	Development of guidelines for
				a.	maintenance and effectiveness.
				e.	Evaluates the economics feasibility and
					scalability of micro cold storage for
2	Nugroho	Vaccine cold	chain	a 1/0	accine cold chain management
2	Agung Pambudi Alfan	management and		a. va cold	storage technology
	Agung Famouul, Anan Sarifudin IndraMamad	storage technolo	$\frac{1}{2}$	b i	address the challenges of vaccination
	Gandidi, Rahmat Rom adhon	address the challe	inges of	prog	grams.
	Energy Reports- Review	vaccination progra	ms	с.	Damage control of vaccines while
	Article (November 2022)	1 0		disti	ribution from manufacturing units to
				facil	ities.
				d. H	ighlights the storage issues.
3	Arvan Karkra, Raikumar	Feasibility Study	of Solar		- <u>g</u> <u>g</u>
	Chauhan and Dr. JP Kesari	Power Equipped	Vaccine	a.]	Feasibility in implementation of solar
	International Research Journal	Storage Units in	Rural	now	rered vaccine storage units in rural areas of
	of Modernization in	Areas-Lesson lear	nt from	Indi	a
	Engineering Technology and	COVID pandemic	int nom	h V	Vaccine distribution and importance of
	Science - research article (July			rohi	ist cold chain management
	2021)			c T	he need for decentralized storage facilities
	2021)			c va	lue of renewable energy solutions
				d I	ssues related to solar refrigerators are
				maii	aly the maintenance of these photovoltaic
				sveti	ems which requires skilled engineers and
				tech	nicians malfunctioning of the refrigerator
				in n	oor weather conditions etc
				m p ⊳ H	owever the lifespan of solar refrigerators is
				o. 11	and 10-20 years with proper maintenance
1	Steve McCorney Ioonie	Using solar r	owered	arou	ind 10-20 years with proper maintenance.
-	Robertson Juliette Arnoud	refrigeration for	vaccine	a]	Paliable Storage
	Kobertson, Junetie Allaud,	storage where	other	a. 1 h i	Cost Efficiency
	Kiistina Lorenson and John Ulovd	sources of	raliable	0. v	Enhanced Access
	Lloyd	sources or	dequete	U. 1 1 (Emilanced Access
	Article (December 2012)	electricity are ma	aequate	a. 1	Sustainability
	Article (December 2013)	or costry		e. 1 r	Community Desiliones
				I. (A landal liter
				g. 1 L (Adaptability
				n	Study results inform policy decisions,
				ä	auvocating solar infrastructure investments
				1 • •	tor remable vaccine storage.
				1.	Successful implementation ninges on
				1	partnerships among governments, NGOs,
					and private sectors.

5	National Cold Chain Vaccine	Evaluation	of Solar	
5	Management and Descure	L'valuation Urbrid	Dhoto voltai	a Salar hybrid gystama raliably
	Contro The National Institute	nyonu Szatana in	Photo-voltan	a. Solar hydrid systems remained
	of Health and Family Walfana	Control in	Mahanaahtua	b Cost servings were achieved due to
	of fleatin and Family wellare	Centres In	Manarashtra.	b. Cost savings were achieved due to
	In collaboration with MolHw			reduced renance on conventional
	and UNICEF			electricity.
	(April 2016)			c. Improved energy access positively
				impacted nealthcare services in remote
				areas.
				d. Solar systems contributed to
				environmental sustainability by reducing
				carbon emissions.
				e. Maintenance and training emerged
				as essential factors for sustainable
				system operation.
				f. Positive policy implications were
				identified, promoting wider adoption of
				solar technologies.
6	Hui Hua, Jiajun Xub, Mengqi	Vaccine	supply chair	
	Liuc and Ming K. Lim, Journal	manageme	nt: Ar	a. Enhanced Transparency
	of Business Research-	intelligent	system utilizing	b. Real-time Monitoring
	Research Article (February	blockchain	, IoT and	c. Predictive Analytics, This proactive
	2023)	machine le	arning	approach allows for timely interventions
				and prevents disruptions.
				e. Efficient Inventory Management
				f. Decentralized Data Sharing
				g. Improved Cold Chain Management as,
				IoT sensors ensure that vaccines are stored
				and transported within the required
				temperature range, safeguarding their
				efficacy.
				h. Operational Cost Savings
				i. Scalability and Adaptability
				j. Overall Efficiency Gains: The integration
				of blockchain, IoT, and machine learning
				optimizes vaccine supply chain processes,
				leading to faster delivery, better resource
				utilization, and ultimately, improved public
				health outcomes.
7	A study done by Central	In-Depth A	analysis of Cold	a. Cold Chain Evaluation
	Coordinating Office	Chain Vaco	cine Supply and	b. Temperature Control
	The INCLEN Trust	Logistics N	Management for	c. Stock Management
	International, New Delhi	Routine Ir	nmunization in	d. Data Reporting
	(2020)	Three India	an States:	f. supply chain efficiency affects
		An inc	len program	immunization coverage and equity
		evaluation	network study	across different groups.
				g. Training programs for cold chain and
				logistics staff are examined, with
				suggestions for skill enhancement.
				h. Policy Insights

8	Jian Sun, Mingkan Zhang,	COVID 19 vaccine	a. Ultra-Low Temperature Storage Viability
	Anthony Gehl, Brian Fricke,	distribution solution to the	b. Temperature Maintenance
	Kashif Nawaz, Kyle	last mile challenge:	c. Mitigating Cold Chain Breaks
	Gluesenkamp, Bo Shen, Jeff	Experimental and	d. Vaccine Integrity Preservation
	Munk, Joe Hagerman, Melissa	simulation studies of	e. Optimal Route Planning
	Lapsa, International Journal of	ultra-low temperature	f. Resource Allocation
	Refrigeration- Research	refrigeration system	g. Operational Efficiency
	Article (January 2022)		h. Scalability
	(i Logistical Planning
			i Public Health Impact
9	Vi Zhao Xuelai Zhang*	Development of	a Composite Phase Change Material
	Xiaofeng Xu Shihua Zhang	composite phase change	(PCM) Development suitable for cold
	Journal of Energy Storage	cold storage material and	storage applications specifically for
	Research Article (August	its application in vaccine	preserving vaccines
	2020)	cold storage equipment	h Enhanced Thermal Performance
	2020)	cold storage equipment	o. Vegging Procervation
			c. Vaccine Fleservation
			General Adventation
			e. Scalability and Adaptability
			f. Practical Implementation
10	Mohammed Raihan Uddin,	Energy analysis of a solar	a. Energy efficiency of a solar-driven
	Shadman Mahmud, Sayedus	driven vaccine refrigerator	vaccine refrigerator.
	Salehin, Md Abdul Aziz	using environment-	b. Solar Power Viability
	Bhuiyan, Fahid Riazb, Anish	friendly refrigerants for	c. Environmental Impact
	Modid and Chaudhary Awais	off-grid locations	d. Off-Grid Suitability
	Salman- Energy Conservation		e. Solar-driven vaccine refrigeration
	and Management X- Research		reduces the dependency on conventional
	Article (July 2021)		energy sources.
			f. Temperature Control
			g. Technology Integration
			h Healthcare Accessibility in
			underserved regions where reliable
			vaccine storage is crucial
			i Implementations of solar-driven
			vaccine refrigeration systems, supporting
			offorts to onbanco immunization
			programs and health outcomes
11	Dhaarai Chandraa and Dinash	Evaluating the offect of	The key findings of this study are as follows:
11	Uneeraj Chandraa and Dinesin	Liver monthagener	KDL Influence in the veccine supply
	Article (June 2021)	in lighters of vegeting	a. KPT influence in the vaccine supply
	Article (June 2021)	indicators of vaccine	the Mission Industry house are grown
		supply chain on	the Mission Indradnanush program.
		sustainable development	b. Immunization Coverage: Certain KPIs,
		of mission indradhanush:	such as vaccine availability and distribution
		A structural equation	efficiency, have a positive effect on
		modeling approach	achieving higher immunization coverage, a
			critical aspect of sustainable development in
			healthcare.
			c. Healthcare Access
			d. Resource Utilization in the vaccine
			supply chain, minimizing wastage and
			enhancing sustainability.

			e. Data Accuracy f. Policy Implications g. Highlights the interconnections between KPIs and sustainable
			development.
12	Aniket A. Kagwade, Pranav A. Herle1. Shivrai S. Narke1.	Solar Based Vaccine Storage System	a. Potential of harnessing solar energy to ensure consistent
	Surai C. Patill. Mr. P.A.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	h Temperature Control
	Thorat- International Journal		c. Energy Efficiency
	of Research Publication and		d. Reliability
	Reviews- Review Article		e. Remote Accessibility
	(2021)		f. Sustainability
			g. Practical feasibility of implementing
			solar- based vaccine storage systems in
			healthcare facilities.
			h. Ensuring the availability of potent
			vaccines, contributing to disease prevention
			and control.
			i. Adaptability
13	UIP- Ministry of health and	Universal Immunization	
	family welfare, Govt. of India	Programme in India (UIP)	a. Expanded Vaccine Coverage
	(December 2022)		b. Disease Prevention
			c. Infant Mortality Reduction
			d. Epidemic Control
			e. The program emphasizes equitable access
			to vaccines, targeting vulnerable and
			imarginalized populations to ensure that
			f Immunization Infrastructure
			g Integrated Approach
			h Awareness and Education
			i Public-Private Partnership
			i. Global Impact
14	Shailender Kumar- Institute for	India in the Global	a. The report assesses India's
	Studies in Industrial	Vaccine Market Prior To	substantial contribution to the global
	Development (October 2022)	and During COVID-19:	vaccine market before the covid-19
	÷ ` ′	Some Structural Issues	pandemic as a major supplier of
			vaccines.
			b. Vaccine Self-Sufficiency by India
			and demand globally from India.
			c. Global Health Diplomacy.

15	Ashvin Ashok, Michael	Improving cold chain	a. Infrastructure Constraints: The study
	Brison, Yann LeTallec	systems: Challenges and	identifies infrastructure challenges within
	Vaccine- Review Article (April	lsolutions	cold chain systems, including inadequate
	2017)		storage capacity, unreliable power supply,
			and insufficient transportation facilities.
			b. Temperature Monitoring
			c. Technological Solutions such as IoT
			d. Capacity Building
			e. Public-Private Partnerships
			f. The potential of solar-powered cold chain
			solutions to overcome energy-related
			challenges in regions with unreliable
			electricity access.
			g. Integrating cold chain management
			with broader healthcare supply chain
			systems can lead to synergies and
			optimize resource utilization
			h Policy and Regulatory Frameworks
			i Data Sharing and Analytics
			i Global Implications on healthcare products
16	Ioanie Robertson Laurer	Innovations in cold chain	a Temperature Stability
10	Franzel and Denis Maire	equipment for	h Technology Integration
	Vaccine- Review Journal	limmunization supply	c Energy Efficiency
	(April 2017)	chains	d Solar-Powered Solutions
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Chamb	e Cold Chain Optimization
			f Remote Access and Control
			g Ease of Use and Maintenance
			h Disease-Specific Requirements
			i Customization and Adaptability
			i Sustainability and Environmental Impact
			k Cost-Effectiveness
			1 Operational Resilience
17	National Cold chair	National Assessment Of	
1 /	management Information	Solar Cold Chain	a The assessment highlights the
	System Govt of India (2014)	Equipment Under India's	successful integration of solar-nowered
		Liniversal Immunization	cold chain equipment into India's LUP
		Programme	b. Vaccine Availability and Efficacy
		i iogramme	c Improved the reliability of vaccine
			storage and distribution by reducing
			dependence on grid electricity
			d demonstrates the significance of solar
			and about sustains in reaching remote and
			off grid group
			on-gnu areas.
			c. Energy Entremetry
			g. Scalability and Sustainability
			n. Public Health Impact
			1. Policy implications
			J. Informed decision-making for future
			infrastructure quiding offects to cul
			intrastructure, guiding efforts to enhance
1			vaccine storage and distribution capabilities

			in India's immunization program.
			1 0
18	John Lloyda, Steve	Optimizing energy for a	a. Energy Efficiency Strategies
	McCarneyb, Ramzi Ouhichic,	'green' vaccine supply	b. Renewable Energy Integration
	Patrick Lydond and Michel	chain	c. Cold Chain Optimization
	Zaffrand - Vaccine- Review		d. Route Optimization
	Article (February 2015)		e. Technological Innovations
	× • /		f. Collaborative Efforts
			g. Lifecycle Analysis
			h. Carbon Footprint Reduction
			i. Cost Savings for vaccine manufacturers
			and distributors
			i Energy optimization enhances the
			resilience of the vaccine supply chain
			k By optimizing energy usage the
			vaccine supply chain contributes to
			improved public health outcomes through
			effective vaccine distribution
			1 Provides sustainable and reliable solution
			for vaccing storage in gross with limited
			nor vaccine storage in areas with infined
10	Uanahal Mandha Vinan	Cald shain maintanan sa in	access to electricity.
19	Malada Dhinai Dhawanani	Cold chain maintenance in	Cold Choin Infustionations Assessment
	Makade, Dhiraj Bhawanani,	Rajnandgaon and Bilaspur	a. Cold Chain Initastructure Assessment
	Ronit David, Nitin Kamble,	districts of Chnattisgarn: A	b. Maintenance Practices Evaluation
	Daneshwar Singh and Monika	process evaluation	c. Timeliness of Maintenance
	Dengani- Department of		d. Cold Chain Equipment Performance
	Community Medicine,		e. Capacity Building and Training
	Government Medical College,		f. Allocation of resources, budgeting,
	Rajnandgaon, Chhattisgarh,		and availability of spare parts for cold
	India-		chain maintenance.
	Research Article		g. Temperature Monitoring Practices
	(November-December 2018)		h. Compliance with Guidelines
			i. Recommendations for Improvement
			j. Impact on Immunization Services
20	Tara Azimi, Lauren Franzel	Seizing market shaping	
	and Nina Probst- Vaccine -	opportunities for vaccine	a. Market Dynamics Assessment
	Review Article (April 2017)	cold chain equipment	b. Innovative Technologies
			c. Private Sector Engagement
			d. Public-Private Partnerships
			e. Market Entry Strategies
			f. Local Manufacturing and Production
			g. Tailored Solutions
			h. Market Incentives
			i. Sustainability and Environmental Impact
			j. Capacity Building

			k. Policy and Regulation
21	John Lloyd and James Cheyne-	The origins of the vaccine	
	Vaccine- Review Article (April	cold chain and a glimpse	a. Historical Evolution
	2017)	of the future	b. Early Challenges faced by early
			vaccination programs.
			c. The role of innovations in refrigeration
			technology, packaging materials, and
			transportation methods in shaping the
			vaccine cold chain and expanding
			immunization coverage.
			d. Global Health Impact
			e. Temperature Control
			f. Vaccine Efficacy and Equity
			g. Modern Cold Chain Infrastructure
			h. Technological Advancements
			i. Future Challenges and Innovations
			j. Sustainability and Energy Efficiency
			k. Immunization Strategies
			1. Interdisciplinary Collaboration
22	Hamish Beatha, Muriel	The cost and emissions	a. Economic Viability
	Hausera, Philip Sandwellb,	advantages of	b. Energy Demand Stabilization
	Ajay Gambhira, Sheridan	incorporating anchor loads	c. Revenue Generation
	Fewa, Clementine L.	into solar mini-grids in	d. Reduced Emissions and
	Chambonc and Jenny Nelsona-	India	supporting sustainable energy
	Renewable and Sustainable		transition.
	Energy Transition- Research		f. Energy Access
	Article (August 2021)		g. Policy Implications
			h. The research discusses the potential for
			hybrid mini-grid systems that combine
			solar power with other renewable sources,
			further enhancing energy reliability and
			system performance.
			i. Operational Resilience
<u></u>			
23	Magali Cattin, Sashidhar	The status of refrigeration	a. The study assesses the existing
	Jonnalagedda, Solomzi	solutions for last mile	refrigeration infrastructure for last-mile
	Makonliso and Klaus	vaccine delivery in low-	vaccine delivery in low-income settings
	Schonenberger- Vaccine: X	income settings	b. Access Barriers
	(August 2022)		c. The innovative solutions, such as solar-
			powered refrigeration units and portable
			cold boxes for addressing the challenges of
			last- mile vaccine delivery in resource-
			Temperature Control and second second
			a. Temperature Control and vaccine wastage
			e. Data Monitoring and Tracking
			1. Community Engagement
			g. numan Resource Capacity
			i. Supply Chain Integration
			h. Supply Chain Integration i. Affordability and Sustainability

			j. Health System Strengthening
			k. Policy and Investment
			1. Impact on Immunization Coverage
24	Ministry of Health and FamilyCold	d Chain and Logistic	a. Temperature Control
	welfare, Govt. of IndiaMan	nagement	b. Equipment and Infrastructure
	Assessment Report (2010)	e	c. Supply Chain Visibility
			d. Training and Capacity Building
			e. Data Management
			f. Quality Assurance
			g. Cost Efficiency
			h Global Reach
			i Technology Integration
			i Sustainability
25	Kim De Boeck* CatherineVacc	cine distribution	The key findings of this study are as follows:
23	Decouttere Nico Vandaele chai	ins in low- and middle-	2 Complexity of Vaccine Distribution Chains
	Omaga Paviay Articlainco	me countries: A	a. Complexity of Vaccine Distribution Chains
	(December 2020)	onte countres. A	o. Last Mile Delivery Challenges
	(December 2020)	ature review	c. Last-Mile Delivery Challenges.
			d. Cold Chain Management
			e. Innovations in Distribution Strategies
			I. Data-Driven Decision-Making
			g. Capacity Building and Training
26		1	h. Local Context Considerations
26	Leila A. Haidari, Shawn T. Whe	en are solar	The key findings of this study are as follows:
	Brown, Patrick Wedlock, refrig	igerators less costly	a. Cost Comparison
	Diana L. Connor, Marie Spikerthan	on-grid refrigerators:	b. Solar Suitability
	and Bruce Y. Lee - A	simulation modeling	c. Energy Efficiency
	Vaccine- Research Articlestudy	y	d. Initial Investment
	(April 2017)		e. Long-Term Savings
			f. Disruption Mitigation
			g. Geographic Variability
			h. Healthcare Access
			i. Policy Implications
			j. Environmental Considerations
			k. Scale and Implementation
			Trade-offs and Context
27	A guide for Managers in Intro	oducing Solar powered	The following points were covered in the study
	National Immunization Vacc	cine Refrigerators and	report released by WHO in collaboration with
	Programmes- WHO in Free	ezer Systems.	UNICEF:
	collaboration with UNICEF		a. Introduction to Solar-Powered Systems
	(2015)		b. Technical Specifications and Selection
			c. Installation and Setup
			d. Maintenance and Operation
			e. Temperature Monitoring and Data
			Management
			f. Training and Capacity Building
			g. Energy Efficiency and Sustainability
			h. Emergency Preparedness
			i. Resource Planning and Budgeting
			i Integration with Immunization Programs
			k Monitoring and Evaluation
			1 Global Best Practices

28	Solar	direct	Drive	Study	Solar	direct	drive	Vaccine	a. Temperature Control
	Assess	ment do	ne by U	NICEF	Refrig	gerator	s and I	Freezers	b. Reliability in Off-Grid Areas
	in coll	laboratio	n with	WHO					c. Energy Efficiency
	(2017)								d. Suitability for Remote Locations
									e. Low Maintenance
									f. Impact on Immunization Programs
									g. Public Health Outcomes
									h. Cold Chain Strengthening
									i. Local Empowerment
									Partnerships and Collaboration

The review of identified articles reveals a wide range of potential barriers to vaccine cold chain systems. It also highlights solar technology as a sustainable approach for enhancing vaccine cold chain management. Furthermore, it discusses global challenges and possible interventions, as illustrated in the Table 2. These interventions are aimed at addressing the identified limitations and improving vaccine management and the utilization of solar energy in healthcare systems.

B.	Global Vaccine Challenges:						
i.	Limited Innovation:	 India primarily focuses on generic production, rather than vaccine innovation and development. 	 Encourage research and development in vaccine innovation. Foster partnerships between Indian vaccine manufacturers and global research institutions. 				
ii.	Challenges in COVID-19 Vaccine Production:	 Scaling up COVID-19 vaccine production during the pandemic faced hurdles like supply chain disruptions, regulatory obstacles, and technology transfer issues. 	 Enhance supply chain resilience through diversified sourcing of raw materials and production capacity. Streamline regulatory processes to expedite vaccine production during emergencies. 				
iii.	Supply Chain Complexities:	 Complexities in vaccine supply chains exposed issues related to raw materials, production capacity, and distribution logistics. 	 Establish a strategic reserve of critical vaccine components. 				
iv.	Global Dependence:	 Heavy global dependence on a few vaccine manufacturers, including India, was revealed during the pandemic, highlighting the need for diversification and resilience in vaccine supply. 	 Promote vaccine production diversification in India and other countries. Collaborate with international partners to build regional vaccine manufacturing capacity. 				
v.	Intellectual Property and Access:	 Challenges in equitable vaccine distribution and availability, especially in 	 Support initiatives for equitable vaccine access, including technology-sharing 				

Table 2: Barriers and Interventions

		low-income countries, were discussed in terms of intellectual property rights and access issues.	agreements.
vi.	Operational Challenges:	 Challenges related to maintenance, repair, and technical support for solar cold chain equipment were identified, emphasizing the importance of Training and local capacity building. 	 o Expand training programs for maintenance and repair of solar cold chain equipment. o Establish local service centers fortimely technical support.
vii.	Early Challenges:	 limitations in refrigeration technology and cold storage infrastructure. Influenced the development o cold chain practices. 	o Upgrade cold storage infrastructure and invest in energy-efficient refrigeration technology. f o Develop mobile cold storage units forremote and underserved areas.
viii.	System Optimization:	 System design, maintenance, and monitoring, while also suggesting adaptations and strategies to optimize the performance of solar direct- drive refrigerators and freezers. 	 o Invest in research and development to improve the performance of solar direct-drive refrigerators and freezers. o Provide technical guidance to healthcare facilities on system designand monitoring.
ix.	Solar Charge Controller PWM (Pulse width modulation)	 Limited testing. Requirement of skilled engineers and technicians Malfunctioning in poo weather conditions and Limitedscope of the study 	 o Introduce thorough testing protocols to ensure the reliability and durability of PWM charge controllers. o Establish a training program to enhance the skills of engineers and technicians in maintaining and troubleshooting PWM controllers. o Develop weather-resistant enclosures or backup power solutions to mitigate malfunctioning during adverse weather conditions.
х.	Operational Considerations	 Complex technologies can belimited by available resources Technological barriers may hinde operational efficiency. Electricity access issues and Cost o leveraging solar energy 	 o Simplify and adapt complex technologies to suit resource- constrained settings. o Provide training programs to overcome technological barriers andensure efficient operation. o Address electricity access issues through off-grid solar solutions or backup power sources.

DISCUSSION

Vaccine distribution in low- and middle-income countries presents a multifaceted challenge, as illuminated by the comprehensive literature review conducted in this study. The complexity of these distribution chains is underscored by the involvement of multiple stakeholders, variable infrastructure, and the formidable task of reaching remote and underserved populations(29). To overcome these complexities, strategic collaboration among governmental bodies, non-governmental organizations (NGOs), and international entities becomes paramount. Public-private partnerships, for instance, have demonstrated their effectiveness in optimizing distribution logistics and expanding the reach of vaccination programs. Moreover, addressing the supply chain challenges identified, including inadequate transportation networks and unreliable electricity supply for cold chain storage, necessitates significant investments in infrastructure(11). Governments and international organizations must prioritize the enhancement of transportation infrastructure and the reliability of electricity supply to ensure the efficient distribution of vaccines. The challenges associated with reaching the last mile of the population, often attributed to geographical barriers, poor road networks, and limited access to healthcare facilities, demand innovative solution(6). The deployment of mobile clinics and community health workers has proven instrumental in overcoming these challenges, and investments in these approaches are crucial for achieving comprehensive vaccine coverage(8,11).

The maintenance of an unbroken cold chain is a linchpin of vaccine potency and effectiveness. The research findings emphasize the significance of investments in temperature monitoring technology, equipment maintenance, and robust data monitoring systems(30). Furthermore, the skills and knowledge of healthcare workers play a pivotal role in ensuring proper cold chain management. Initiatives for their training and capacity building must be given due attention. Data collection and analysis have emerged as vital components in optimizing vaccine distribution chains. Real-time monitoring, informed decision-making, and continuous improvement in distribution chains can be enabled through investments in robust data management systems. Recognizing the local socio-cultural, economic, and political context is paramount in designing effective distribution strategies(8). Tailored approaches that account for local nuances are more likely to enhance the acceptance and success of vaccination programs. Effective policies, governance structures, and regulatory frameworks are essential in ensuring equitable access to vaccines. Additionally, addressing disparities in immunization coverage calls for targeted strategies that ensure equitable access to vaccines for all(21).

The study on the cost-effectiveness of solar refrigerators presents critical insights into a sustainable solution for vaccine storage, particularly in regions with limited or unreliable grid electricity. Notably, the cost comparison between solar and on-grid refrigeration systems highlights the potential long-term savings and improved vaccine access associated with solar-powered solutions. Furthermore, the emphasis on energy efficiency in solar refrigeration aligns with sustainability goals. Prioritizing the procurement of energyefficient solar refrigeration systems not only reduces operating costs but also contributes to environmental sustainability. Solar refrigerators' ability to mitigate disruptions in electricity supply is of paramount importance, especially in remote and underserved areas(19). Government needs to invest in solar solutions as an integral component of their emergency preparedness plans. Considering geographical factors, such as sunlight availability and climate, is essential when deploying solar refrigerators(31). Tailored solutions that account for local conditions can optimize system performance and longevity. The findings highlight the significant potential of cost- effective solar refrigerators in enhancing healthcare access in remote areas by ensuring the availability of temperature-sensitive medical products(12). Policymakers should take note of these positive findings, which call for policy adjustments and increased investments in sustainable energy solutions for healthcare(11). Lastly, the potential for scaling up the use of solar refrigeration systems should be explored, with a specific focus on proper implementation, maintenance, and monitoring. Decision- makers should weigh trade-offs and consider the unique context of healthcare settings when selecting between solar and on-grid refrigeration solutions(20).

The sustainability of solar-powered vaccine cold chain systems is a paramount consideration in ensuring the

reliable storage and distribution of vaccines, especially in resource-constrained and off-grid regions. These systems offer multiple facets of sustainability, beginning with their remarkable energy efficiency. By harnessing renewable solar energy to power refrigeration units, they reduce dependence on conventional fossil fuels and grid electricity, resulting in both cost savings and a reduced environmental footprint(36). Over time, this energy-efficient approach proves economically sustainable, as initial investments are offset by long-term operational cost reductions(7).

Furthermore, solar refrigerators demonstrate exceptional reliability in off-grid areas, where access to consistent grid electricity is often limited or cost-prohibitive(4). Their ability to operate independently of centralized power sources ensures a continuous vaccine supply, enhancing the sustainability of immunization programs even in regions beset by infrastructure challenges. Remarkably, these systems have relatively low maintenance requirements, a critical factor in resource-limited settings, where technical expertise and resources for maintenance may be scarce(10). This reduced maintenance need makes solar refrigeration systems practical and sustainable for extended use, minimizing disruptions in vaccine supply(17,21).

The positive impact of solar-powered refrigeration on immunization programs contributes to their long- term sustainability(30). Improved vaccine availability, reduced wastage, and enhanced program efficiency result in better public health outcomes and more effective disease control. Moreover, these systems empower local communities and healthcare facilities by providing a reliable and sustainable solution for vaccine storage. This reduced dependency on external energy sources aligns with sustainability principles, fostering self-reliance and capacity-building at the community level.

From an environmental standpoint, solar-powered refrigeration decreases reliance on fossil fuels, promoting sustainability by lowering greenhouse gas emissions associated with electricity generation. It supports global efforts to mitigate climate change and aligns with environmental stewardship goals. Lastly, the potential for scalability and expansion underscores the long-term sustainability of these systems(19). By extending the adoption of sustainable energy solutions, countries can enhance the resilience and effectiveness of their healthcare infrastructure over time, aligning with broader sustainability objectives in healthcare and beyond.

CONCLUSION

In conclusion, this study highlights the critical importance of immunization programs in safeguarding populations against vaccine-preventable diseases. The Expanded Program on Immunization (EPI) and India's Universal Immunization Programme (UIP) have made significant strides in reaching millions of individuals, but their success relies heavily on a well-coordinated cold chain system. Traditional cold storage methods face limitations in resource-constrained settings, where electricity shortages and power outages are common. To address these challenges, solar-powered refrigeration systems have emerged as a promising solution. Solar energy, harnessed through solar refrigeration, offers a sustainable and reliable power source for vaccine storage, particularly in regions abundant in sunlight resources. The study highlights the successful implementation of solar-powered vaccine cold chain systems in India, aligning with various Sustainable Development Goals (SDGs) set by the United Nations. These systems enhance healthcare access, promote clean energy, foster innovation, mitigate climate change, and encourage partnerships. Key findings of the study emphasize the need for proper vaccine management, innovation in vaccine production and supply chain management, equitable vaccine access and global collaboration, investments in solar refrigeration technology and maintenance, robust data management systems for monitoring and decision-making, tailored distribution strategies considering the local context, effective policies and governance for equitable vaccine access, and energy efficiency and sustainability in healthcare.

From a sustainability perspective, the integration of solar-powered solutions not only improves healthcare services but also aligns with SDGs, addressing health, clean energy, industry and infrastructure, climate action, and partnerships. Policymakers should recognize the potential of solar refrigeration systems and invest in their implementation, ultimately contributing to healthier and more sustainable communities.

REFERENCES

1. Ashok a, brison m, letallec y. Improving cold chain systems: challenges and solutions. Vol. 35, vaccine. Elsevier ltd; 2017. P. 2217–23.

2. Mccarney s, robertson j, arnaud j, lorenson k, lloyd j. Using solar-powered refrigeration for vaccine storage where other sources of reliable electricity are inadequate or costly. Vol. 31, vaccine. 2013. P. 6050–7.

3. Matthias dm, robertson j, garrison mm, newland s, nelson c. Freezing temperatures in the vaccine cold chain: a systematic literature review. Vaccine. 2007 may 16;25(20):3980–6.

4. Beath h, hauser m, sandwell p, gambhir a, few s, chambon cl, et al. The cost and emissions advantages of incorporating anchor loads into solar mini-grids in india. Renewable and sustainable energy transition. 2021 aug;1:100003.

5. Raihan uddin m, mahmud s, salehin s, abdul aziz bhuiyan m, riaz f, modi a, et al. Energy analysis of a solar driven vaccine refrigerator using environment-friendly refrigerants for off-grid locations. Energy conversion and management: x. 2021 sep 1;11.

6. Nadimuthu lpr, victor k. Environmental friendly micro cold storage for last-mile covid-19 vaccine logistics. Environmental science and pollution research. 2022 apr 1;29(16):23767–78.

9. Lloyd j, cheyne j. The origins of the vaccine cold chain and a glimpse of the future. Vol. 35, vaccine. Elsevier ltd; 2017. P. 2115–20.

10. Mendhe h, makade k, bhawanani d, david r, kamble n, singh d, et al. Cold chain maintenance in rajnandgaon and bilaspur districts of chhattisgarh: a process evaluation. J family med prim care. 2018;7(6):1510.

11. Sun j, zhang m, gehl a, fricke b, nawaz k, gluesenkamp k, et al. Covid 19 vaccine distribution solution to the last mile challenge: experimental and simulation studies of ultra-low temperature refrigeration system. International journal of refrigeration. 2022 jan 1;133:313–25.

12. Karkra a, chauhan r, kesari j. Feasibility study of solar power equipped vaccine storage units in rural areaslesson learnt from covid pandemic [internet]. International research journal of modernization in engineering technology and science www.irjmets.com @international research journal of modernization in engineering. 1998. Available from: www.irjmets.com

13. Cattin m, jonnalagedda s, makohliso s, schönenberger k. The status of refrigeration solutions for last mile vaccine delivery in low-income settings. Vol. 11, vaccine: x. Elsevier ltd; 2022.

14. A guide for managers in national immunization programmes introducing solar-powered vaccine refrigerator and freezer systems.

15. Solar direct drive refrigerators and freezers supply division cold chain support package procurement guidelines procurement guidelines solar direct drive refrigerators and freezers.

16. Kapuria b. Table of contents 1.1 solar cold chain refrigerator 14 2.1 objective 2.2 methodology list of figures list of tables list of abbreviations acknowledgement.

17. Lloyd j, mccarney s, ouhichi r, lydon p, zaffran m. Optimizing energy for a "green" vaccine supply chain. Vaccine. 2015 feb 11;33(7):908–13.

18. Evaluation of solar hybrid photo-voltaic system in primary health centres in maharashtra, evaluation of solar hybrid photo-voltaic system in primary health centres in maharashtra. 2016.

19. Zhao y, zhang x, xu x, zhang s. Development of composite phase change cold storage material and its application in vaccine cold storage equipment. J energy storage. 2020 aug 1;30.

20. Pambudi na, sarifudin a, gandidi im, romadhon r. Vaccine cold chain management and cold storage technology to address the challenges of vaccination programs. Vol. 8, energy reports. Elsevier ltd; 2022. P. 955–72.

21. Chandra d, kumar d. Evaluating the effect of key performance indicators of vaccine supply chain on sustainable development of mission indradhanush: a structural equation modeling approach. Omega (united kingdom). 2021 jun 1;101.

22. Nadimuthu lpr, victor k. Environmental friendly micro cold storage for last-mile covid-19 vaccine logistics. Environmental science and pollution research. 2022 apr 1;29(16):23767–78.

23. Pambudi na, sarifudin a, gandidi im, romadhon r. Vaccine cold chain management and cold storage technology to address the challenges of vaccination programs. Vol. 8, energy reports. Elsevier ltd; 2022. P. 955–72.

24. Kagwade aa, herle pa, narke ss, patil sc, thorat mpa. Solar based vaccine storage system [internet]. International journal of research publication and reviewsvol. 2021. Available from: www.ijrpr.com

26. Hu h, xu j, liu m, lim mk. Vaccine supply chain management: an intelligent system utilizing blockchain, iot and machine learning. J bus res. 2023 feb 1;156.

27. Mendhe h, makade k, bhawanani d, david r, kamble n, singh d, et al. Cold chain maintenance in rajnandgaon and bilaspur districts of chhattisgarh: a process evaluation. J family med prim care. 2018;7(6):1510.

29. De boeck k, decouttere c, vandaele n. Vaccine distribution chains in low- and middle-income countries: a literature review. Vol. 97, omega (united kingdom). Elsevier ltd; 2020.

30. Kumar s. Isid working paper 250 india in the global vaccine market prior to and during covid-19: some structural issues [internet]. 2022. Available from: https://isid.org.in

31. Hu h, xu j, liu m, lim mk. Vaccine supply chain management: an intelligent system utilizing blockchain, iot and machine learning. J bus res. 2023 feb 1;156.