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ABSTRACT 
we develop a mathematical analysis for dynamic nature of cracked beam under the assumption of strong and 

weak dampness by using first principles in terms of sub-differentials of the bending and axial potential 

energies. 
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INTRODUCTION 

The main objective of this paper to analyze dynamic nature of cracked beam and shall arches based on 

mathematical frame-work, we derive equation of motion and establish existence and uniqueness of result for 

such equation. The presence of cracks tends to weaker regularity which results in arches motion [7, 8]. 

Let the transverse motion of beam is given by function 𝑥(𝑦, 𝑡)𝑎𝑛𝑑 𝑦 ∈ (0, 𝜏), 𝑡 ≥ 0. 
 

Which shows deformation of beam from x-axis boundary conditions are 

 

𝑥(0, 𝑡) = 𝑥′′(0, 𝑡) = 0, 
 

𝑥(𝜏, 𝑡) = 𝑥′′(𝜏, 𝑡) = 0, 𝑡𝜖[0, 𝑇] … … (1) 

 

We assume these are ‘n’ cracks in the beam at the points  

 

0 < 𝑦1 < ⋯ … . . < 𝑦𝑛. . < 𝜏. 
 

Now we define special Hilbert space which is broad enough to have continuous functions and discontinuous 

derivative at joint crack points such that  

 

𝑈 ⊂ 𝐻0
′ ⊂ 𝐻 ⊂ (𝐻0

′ )′ ⊂ 𝑈′ 

 

Now we define operator  𝐹: 𝑈 → 𝑈′ 

 

And  

 

𝐹(𝑢, 𝑣)𝑣 = ∑(𝑢′′, 𝑣′′)

𝑛+1

𝑖=1

+ ∑
1

𝜙𝑖
𝐽(𝑣′′)(𝑦𝑖), 𝐽(

𝑛

𝑖=1

𝑢′)𝑦𝑖 … … … … . (2) 

 

𝑓𝑜𝑟 𝑢, 𝑣 𝜖 𝑈 𝑎𝑛𝑑 𝜙𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑎𝑡 𝑖𝑡ℎ 𝑐𝑟𝑎𝑐𝑘 

 

𝐽(𝑣′)(𝑦) = 𝑣′𝑦+ − 𝑣′𝑦− 

  

J is the Jump point between two cracks. For substantial literature survey and reviews of elements with cracks 

you can refer [1-6] and [9-14]. 

http://www.periodicos.ulbra.br/index.php/acta/
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Hilbert Space 

In this section we introduce Hilbert space 𝐻, 𝑉, 𝐻0
1 which is much suitable for cracked elements see [15]. 

Suppose that arch has n cracks at the points 0 < 𝑦1 < 𝑦2 < ⋯ < 𝑦𝑛 < 𝜏 in the interval 
[0, 𝜏]. 𝑛𝑜𝑤 𝑎𝑛𝑦 𝑠𝑢𝑏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑙𝑖 = (𝑦𝑖−1, 𝑦𝑖) , 𝑖 = 1,2,3 … . , 𝑛 + 1 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑  in the interval [0, 𝜏]. 
Let H be the Hilbert Space  

 

 𝐻 =⊕𝑖=1
𝑛+1 𝐿2(𝑙𝑖) … … … … … (3) 

 

We denote inner product by(.  , . )𝑎𝑛𝑑 𝑛𝑜𝑟𝑚 𝑖𝑛 𝐿2(𝑙𝑖) , 𝑖 = 1,2,3 … . , 𝑛 + 1 by|. |, which is defined 

as(𝑢, 𝑣)𝐻 = ∑ (𝑢, 𝑣)𝑛+1
𝑖=1 ,  

|𝑢|2
𝐻 = ∑|𝑢|2

𝑖

𝑛+1

𝑖=1

… … … … … (4) 

 

Let us defined the linear space  

𝑉 = (𝑣𝜖 ⊕𝑖=1
𝑛+1 𝐻2(𝑙𝑖): 𝑉(0) = 𝑉(𝜏) = 0, 𝐽(𝑉)𝑦𝑖 = 0; 𝑖 = 1,2. . 𝑛 … … . (5) 

The inner product on V is given by 

(𝑢, 𝑣)𝑉 = ∑(𝑢′′, 𝑣′′)𝑖

𝑛+1

𝑖=1

+ ∑ 𝐽(𝑢′)(𝑦𝑖)

𝑛

𝑖=1

𝑓𝑜𝑟 𝑢, 𝑣 ∈ 𝑉 … … (6) 

 

Where  (𝑢′′, 𝑣′′)𝑖 = ∫
𝑟𝑖

𝑢′′(𝑦)𝑣′′(𝑦)𝑑𝑦 

 

The associated norm V is defined in 𝐿2(𝑙𝑖) as follows: 

||𝑣||
2

𝑉
= ∑ |𝑣′′|2

𝑖
𝑛+1
𝑖=1 + ∑ |𝐽[𝑣′]𝑦𝑖|2𝑛

𝑖=1 , 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑣𝜖𝑉 … … (7)  

The derivatives of u and v are defined component wise in the space 𝐻2(𝑙𝑖) and they are continuous in the 

interval[0, 𝜏]. 
 

 VARIATIONAL SETTING FOR OPERATOR 𝑭 

Lemma –Let 𝐹 be defined by equation (2) then𝐹is continuous, Linear and symmetric and coercive operator 

since all  𝜙𝑖 ≥ 0. 
Now we introduce our boundary conditions as, 

𝑣(0) = 𝑣(𝜏) = 0, 𝑣′′(0) = 𝑣′′(𝜏) = 0 … … … … … . . (8) 

𝑎𝑛𝑑 𝐽(𝑣)(𝑦𝑖) = 0, 𝐽(𝑣′′)(𝑦𝑖) = 0, 𝐽(𝑣′′′)(𝑦𝑖) = 0 

𝐽(𝑣′)(𝑦𝑖) = ∅𝑖𝐽(𝑣′′)(𝑦𝑖
+) 

For 𝑖 = 1,2,3 … 𝑛, … … … … … … … … … ..                    (9) 

𝐽 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑖𝑛 𝐽(0, 𝜏). 

 

MAIN RESULT 

Beam equations of motion 

After variational formulation in this section we derive beam equation of motion by using extended Hamilton 

principle, here we have two types of potential energies 𝑉𝑎(𝑣), due to axial force and 𝑉𝑏(𝑣), due to bending  

Now sub-differential is calculated by  

𝜕𝜑(𝑣) = 𝐹𝑢 = − ∑ 𝐽(𝑣′)(𝑦𝑖)𝛿(𝑦 − 𝑦𝑖) − 𝑣′′

𝑛

𝑖=1

… … … (10) 

 

Then sub-differential of bending  𝜕 𝑉𝑏(𝑣) = 𝐹𝑢. 
And we know that  

𝑥 + 𝜕𝑉𝑏(𝑥) + 𝜕𝑉𝑎(𝑥) + 𝐶𝑑(𝑥) = 𝑝 … … … … … ….        (11) 

http://www.periodicos.ulbra.br/index.php/acta/
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Is governing abstract equation of beam 𝐶𝑑 is damping coefficient and 𝑝 is the function of y and t, then 

𝑥 + 𝐹(𝑦) −
1

𝜏
(𝛼 +

1

2
|𝑥′|2

𝐻)(∑ 𝐽(𝑥′)(𝑦𝑖)𝛿(𝑦 − 𝑦𝑖) − 𝑥′′) + 𝐶𝑑(𝑥) = 𝑝 … … … (12) 

Is abstract equation of beam with cracks, now by applying our boundary conditions we have:- 

𝑥 + 𝑥′′′′ −
1

𝜏
(𝛼 +

1

2
|𝑥′|2

𝐻)(∑ 𝜙𝑥′′(𝑦𝑖,𝑡)𝛿(𝑦 − 𝑦𝑖) − 𝑥′′) +𝑛
𝑖=1 𝐶𝑑(𝑥) = 𝑝……….(13) 

It is called classical equation of beam, this is also refer the case of weak damping where dynamic viscosity 

coefficient 𝜇 = 0, which shows viscous effect. 

 

STRONG DAMPING 

In case of weak damping we neglect the viscous effect, in case of strong damping where 𝜇 > 0 we introduce 

one more term 𝜇𝐹(𝑥) and the abstract equation will become  

𝑥 + 𝐹(𝑥) + 𝜇𝐹(𝑥) −
1

𝜏
(𝛼 +

1

2
|𝑥′|2

𝐻) ∑( 𝐽(𝑥′)(𝑦𝑖)𝛿(𝑦 − 𝑦𝑖) − 𝑥′′) + 𝐶𝑑

𝑛

𝑖=1

𝑥 = 𝑝 … … (14) 

And 

𝑥 + 𝑥′′′ + 𝜇𝑥′′′′ −
1

𝜏
(𝛼 +

1

2
|𝑥′|2

𝐻)(∑ 𝜙𝑥′′(𝑦𝑖,𝑡)𝛿(𝑦 − 𝑦𝑖) − 𝑥′′) + 𝐶𝑑𝑥 = 𝑝 … … (15)

𝑛

𝑖=1

 

And we conclude that both the equations results are bounded in Hilbert space. 
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